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ABSTRACT

State-of-the-art data analysis methods in genetics and related fields have advanced beyond massively univariate
analyses. However, these methods suffer from the limited amount of data available at a single research site. Re-
cent large-scale multi-centric imaging-genetic studies, such as ENIGMA, have to rely on meta-analysis of mass
univariate models to achieve critical sample sizes for uncovering statistically significant associations. Indeed,
model parameters, but not data, can be securely and anonymously shared between partners. We propose here
partial least squares (PLS) as a multivariate imaging-genetics model in meta-studies. In particular, we propose an
online estimation approach to partial least squares for the sequential estimation of the model parameters in data
batches, based on an approximation of the singular value decomposition (SVD) of partitioned covariance matri-
ces.We applied the proposed approach to the challenging problem of modeling the association between 1,167,117
genetic markers (SNPs, single nucleotide polymorphisms) and the brain cortical and sub-cortical atrophy (354,804
anatomical surface features) in a cohort of 639 individuals from the Alzheimer’s Disease Neuroimaging Initiative.
We compared two different modeling strategies (sequential- and meta-PLS ) to the classic non-distributed PLS.
Both strategies exhibited only minimal approximation errors of model parameters. The proposed approaches
pave the way to the application of multivariate models in large scale imaging-genetics meta-studies, and may
lead to novel understandings of the complex brain phenotype-genotype interactions.
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1. INTRODUCTION

State-of-the-art data analysis methods in genetics and related fields have advanced beyond massively univariate
analyses. However, these methods suffer from the limited amount of data available at a single research site. The
reliability of multivariate models in imaging-genetics is usually hampered by the low sample size of the studies
on the order of 100s of individuals, relatively to the large number of parameters, which is at least one order of
magnitude higher.

Genetic variants often have only a small effect on disease risk or other quantitative phenotype such as
measures derived from brain imaging. Thus, in order to gather sufficient statistical power to detect significant
associations large samples sizes are required typically in the range of 10,000s subjects. Achieving this critical
sample size is often hampered by practical considerations such as the need to transfer large volumes of data to
one single research site and the bureaucratic burden associated with data transfer agreements. To circumvent
data transfer large genetics and imaging-genetics consortia have relied on the concept of meta analysis. For
instance, ENIGMA,1 which studies the association between brain phenotype and genotype on very large cohorts,
relies on meta-analysis of mass univariate models to achieve critical sample sizes. In a meta-analysis only

Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implemen-
tation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete list-
ing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_
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the results of a statistical test (i.e., p-value, effect size, standard error, sample size) are shared, but not the
individual-level data. In this way, model parameters, but not data, can be securely and anonymously shared
between partners. Indeed, meta-analysis represents the standard paradigm of modern large-scale clinical research
projects, involving research and medical institutions with different data sharing policies and restrictions. Thus
far, meta-analysis has been applied only to classic univariate associate tests. Hence, the development of powerful
multivariate modeling approaches within a meta-analysis context is an impelling need to better model the complex
brain phenotype-genotype interactions in very large cohorts. We propose here partial least squares (PLS) as a
multivariate imaging-genetics model in meta-studies. In particular, inspired by early works on recursive partial
least squares2 we propose a novel iterative approach to PLS for the sequential estimation of the model parameters
in data batches, based on the approximation of the singular value decomposition (SVD) of partitioned covariance
matrices.

We propose two different meta-modeling strategies for parameter estimation and cross-validation, which are
compliant with the anonymity restrictions: 1) the PLS model parameters are transmitted and updated by each
centre sequentially (sequential-PLS ), and 2) the PLS model parameters are independently estimated by each
centre and subsequently merged (meta-PLS ). While both strategies are asymptotically equivalent, their degree
of approximation depends on the batch sample size, and on the number of latent components. We applied
the proposed strategies to the challenging problem of modeling the multivariate association between 1,167,117
genetic markers (SNPs; single nucleotide polymorphisms) and the brain cortical and sub-cortical atrophy (354,804
anatomical surface features) in a cohort of 639 individuals from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI). We compared sequential - and meta-PLS to the classic non-distributed PLS, assessing agreement in
model parameters. Both strategies exhibited only minimal approximation errors.

The proposed approaches pave the way to the application of multivariate models in large scale imaging-
genetics meta-studies, and may lead to novel understandings of the complex brain phenotype-genotype interac-
tions.

2. PLS FOR THE ANALYSIS OF MULTIMODAL FEATURES IN MEDICAL
IMAGING

This section introduces notations and the theoretical context of PLS. Let X = {xi}Nsub
1 and Y = {yi}Nsub

1 be
n subjects× n features observation matrices of features xi ∈ Rn and yi ∈ Rm for Nsub individuals.

PLS is a standard approach for modeling the joint variation between X and Y, and is classically formulated
through the decomposition of the matrices X and Y by means of linear mappings u and v. The mappings are
optimised in order to maximise the covariance between the projections, Xu, and Yv.

Among the several versions of PLS,3–7 we focus here on the symmetric formulation of PLS computed through
the SVD of the cross-covariance matrix XY′ = UWV′. This approach has been inspired by the analysis of
principal modes of variability in neuroimaging data8 and has been popularized in the field of neuroimaging in
the seminal works,5,6 for the study of positron emission tomography (PET) and functional magnetic resonance
images (fMRI) through the analysis of the associated eigen-modes of intensity variation.

The first k eigen-modes U′ = {ui}ki=1 and V′ = {vi}ki=1 provide a low-dimensional representation of the main
correlation modes between X and Y, where the relative components weights are informative of the relevance of
specific features in explaining the overall variation. In spite of the apparently prohibitive computational cost of
the SVD of the large covariance matrix XY′ (n featuresX ×n featuresY ), Worsley and colleagues showed that
the main eigen-modes of variation can be derived from the solution of the eigen-problem associated to the usually
smaller (n subjects×n subjects) matrix XX′YY′.9 Thanks to this contribution it has been shown that PLS can
be successfully employed in the modeling of high-dimensional functional and structural brain connectivity,9 as
well as of the joint variation between brain structure and function,10 and between imaging and genetic data.11,12

3. SVD-PLS IN LARGE-SCALE MULTI-CENTRIC STUDIES

In this section we propose a novel approach to PLS within an online-learning framework. We assume that the
set of observations is partitioned in clusters Cl, l = 1, . . . , Nl, representing for instance different clinical centres,
and we denote with Xc and Yc the set of observations belonging to the cluster c.
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Figure 1. The cross-covariance matrix of partitioned data can be decomposed as the sum of cluster-specific covariances.

We start by noting that, with reference to Figure 1, the global cross-covariance matrix C = XY′ can be
decomposed as the sum of cluster-specific covariances: XY′ =

∑
l XlY

′
l. Therefore, in a meta-analysis context,

the estimation of the SVD-PLS model does not require the access to individual data, and can be done by sharing
the cross-covariance matrices Cl. However this operation may be still prohibitive, since the matrices Cl are as
well of dimension n featuresX × n featuresY , therefore usually very large. However, this limitation can be
overcome by replacing the matrices XlY

′
l by their approximation via SVD decomposition: XlY

′
l = UlWlV

′
l,

and thus by sharing only the first kl eigen-vectors u
(l)
i and v

(l)
i , along with the respective eigen-values {w(l)

i }.
The subsequent analysis can then be carried on the approximated covariance C̃ =

∑
l UlWlV

′
l ∼

∑
l XlY

′
l. It is

worth noting that the SVD of the matrix C̃ does not require the explicit computation of the products UlWlV
′
l,

which would be computationally cumbersome. Indeed, it is straightforward to show that C̃ = X̃Ỹ′, where the

columns of X̃ and Ỹ are respectively the components {u(l)
i }, and {w(l)

i v
(l)
i }, i = 1, . . . , kl, and l = 1, . . . , Nl. In

this way the SVD of C̃ can still be efficiently computed with the approach proposed by Worsley and colleagues.9

This numerical scheme motivates the definition of the follwing online-learning approaches to PLS, based on
two different learning strategies, and denoted respectively by sequential and meta-PLS.

3.1 Sequential-PLS

In sequential-PLS we start from an initial approximation of the first k0 eigen-components of the cross-covariance

matrix: {u(0)
i }, {v

(0)
i }, and {w(0)

i }, i = 1, . . . , k0. The components are then transmitted to the centre C1, and are

used to generate the augmented matrices X̃1 = [X1, {u(0)
i }], and Ỹ1 = [Y1, {w(0)

i v
(0)
i }]. The SVD of the cross-

covariance matrix C̃1 = X̃1Ỹ1
′

thus estimates the updated components {u(1)
i }, {v

(1)
i }, and {w(1)

i }, i = 1, . . . , k1,
that are subsequently transmitted to the next centres and updated in an iterative fashion.

This strategy allows at each step to estimate the model parameters by exploiting the data at each centre. The
approximation of sequential-PLS arises from the degree of approximation of the transmitted components u(l),
v(l), and w(l) in the factorization of the covariance C̃l, that can be eventually negligible by sharing an adequate
number of SVD components.

The drawback of sequential-PLS lies in the necessity of re-estimating the whole model in case of changes
occurring at a single centre. A second practical drawback is that the centers have to coordinate themselves or
have to be coordinated by a “moderator”.
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Healthy AD
# individuals 401 238
Sex (% females) 49 45
MMSE 29.1 23.2
Education (years) 16.36 15.34
APOE4 (% 0,1,2) 72, 26, 2 31, 48, 21

Table 1. Summary socio-demographic, clinical and genetic information. MMSE: mini-mental state examination.

3.2 Meta-PLS

In meta-PLS each centre Cl independently estimates the eigen-components {u(l)
i }, {v

(l)
i }, and {w(l)

i }, i = 1, . . . , kl
approximating the cross-covariances XlY

′
l. The different components are then concatenated to form matrices

X̃ = [{u(l)}] and Ỹ = [{w(l)v(l)}], and the eigen-components are finally obtained from the SVD of the matrix
X̃Ỹ′.

Similarly as in sequential-PLS, the approximation introduced in meta-PLS depends on the approximations
made at each centre. However, since the full model is estimated on the joint components in X̃ and Ỹ, it does
not directly exploit the data at each centre.

An advantage of meta-PLS is that it can easily accommodate for eventual changes occurring in a single centre,
which can eventually re-transmit the data without affecting the model estimation in the others sites.

4. NUMERICAL APPROXIMATION

The quality of the approximation of the proposed strategies clearly depends on the number of eigen-components
chosen for approximating the cross-covariance matrix at each site. In what follows the number of eigen-
components is automatically estimated from the set of singular values, in order explain the 90% of the overall
variability of the entire data available at each centre.

5. MODEL VALIDATION IN A CONTROLLED SETTING: AN IMAGING
GENETICS CASE STUDY

We tested the proposed sequential- and meta-PLS strategies in the context of modeling the joint variability in
imaging-genetics, in the same application proposed in.12

5.1 Data processing

We selected genotype and phenotype data available in the ADNI-1/GO/2 datasets for 639 subjects. At time of
imaging/study entry subjects were diagnosed as healthy individuals (N=401), and Alzheimer patients (N=238).
Summary socio-demographic, clinical and genetic information are available in Table 1.

The imaging phenotype consisted of the individuals’ baseline brain cortical thickness maps estimated by
Freesurfer,13 and the bilateral radial thickness maps for hippocampi and amygdalae.14 The imaging compo-
nent comprises 327,684 cortical and 27,120 subcortical features per subject. These raw thickness values were
normalised by covarying for age, total intracranial volume, and sex. Subsequently, data were standardised by
group-wise mean and standard deviation computed in the pooled group of healthy and AD individuals.

Genotype data (Illumina Human610-Quad BeadChip for ADNI-1, and Illumina Human Omni Express for
ADNI-2/GO) was downloaded from the ADNI website and preprocessed with PLINK.15 Standard quality control
(QC) parameters were used to filter SNPs: Minor Allele Frequency (MAF) < 0.01, Genotype Call Rate <95% and
Hardy-Weinberg Equilibrium < 1× 10−6. Finally, SNPs passing QC were imputed to the HapMap III reference
panel and further quality controlled to keep only high quality imputed SNPs (i.e., MAF > 0.01 and imputation
quality score > 0.3). Missing individual SNPs were replaced by the group-wise median. The genotype features
consisted in the individuals’ minor allele counts for each of the resulting 1,167,126 SNPs in chromosomes 1 to
22. The resulting allele counts were finally standardised by group-wise mean and standard deviation computed
in the pooled group of healthy and AD individuals.
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Figure 2. Average (top) and standard deviation (bottom) for the dot product between the components estimated with
sequential- and meta-PLS, and the components estimated with the classic non-distributed PLS. Both strategies lead to
minimal deviation from the benchmark.

5.2 Statistical analysis

The data was randomly partitioned in two non-overlapping groups (each of size n= 319) in order to simulate
independent centres. Within this simulated setting, sequential- and meta-PLS were applied to estimate the
respective model parameters. The results were compared to those obtained with the classic non-distributed
PLS, in terms of dot-product between eigen-components (which quantifies the angle between the spanned eigen-

spaces), and of the absolute feature-wise error between the components weights, measured as Σi
|wi|−|w̃i|
|wi| , where

wi and w̃i are features for respectively non-distributed and online PLS schemes. The assessment was performed
on the first 5 principal eigen-components, and the whole procedure was repeated 50 times with varying data
partitions.

6. RESULTS: COMPONENT STABILITY

Figure 2 shows the component-wise dot-product between the proposed strategies and the non-distributed PLS,
averaged across folds. For all the considered cases the product matrix is diagonal, to indicate that both sequential-
and meta-PLS lead to negligible deviations from the benchmark. Nevertheless, the variability introduced by
meta-PLS is slightly higher. The approximation quality of the proposed online-learning schemes is confirmed
by the feature-wise absolute error between components weights shown in the boxplots of Figure 3. Errors are
generally of small magnitude, and increase for the higher components. In particular, sequential-PLS generally
leads to slightly better approximation than meta-PLS.

On average 282 components were estimated at each centre in order explain 90% of the overall local variability.

7. CONCLUSIONS

In this work we explored an innovative approach to multivariate modeling in a meta-analysis context. We showed
that classical SVD-PLS can be naturally extended to online-learning schemes by leveraging on simple algebraic
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Figure 3. Absolute feature-wise error between the components weights estimated with sequential- and meta-PLS and with
the classic non-distributed PLS. Both strategies lead to minimal differences with respect to the benchmark.

properties of partitioned covariance matrices. We compared two different modeling strategies (sequential- and
meta-PLS ) to the classic non-distributed PLS. We show that the methods have great promise for our target
application, imaging genetics. In a preliminary study of 639 subjects from the ADNI dataset with over 105 brain
MRI-based imaging features and 106 genetic variants, we are able to demonstrate good convergence properties of
both meta-PLS and sequential-PLS. Indeed, the approximation errors, as measured by overall PLS component
compatibility, are negligible, while the individual feature weight error remains within 3%. This is a remarkable
consistency in a dataset with thousands of times more features than subjects. The proposed approaches thus
pave the way to the application of multivariate models in large scale imaging-genetics meta-studies, and may
lead to novel understandings of the complex brain phenotype-genotype interactions. To date, there have been
many successful Genome-Wide Association (GWAS), or mass-univariate studies, relying on meta-analysis. For a
number of practical reasons, the latter has become the Modus Operandi of large genetics consortia, even beyond
brain imaging. Yet, we are not aware of any multi-centre meta-analytic studies using multivariate techniques, such
as PLS. Our approach has tremendous potential to lead to new discoveries of associations between brain imaging
phenotypes and common genetic variants, particularly where multi-SNP and multi-phenotype interactions are
at play.

The accuracy of the proposed schemes critically depends on the low-rank approximation at each centre.
Extensions of this work will aim at investigating the relationship between the number of components shared
by each centre and the overall model approximation. Another important point that will be tackled in future
studies concerns the study of online cross-validation schemes for estimating confidence intervals for sequential-
and meta- PLS parameters. This aspect is critical for the inference and interpretation of modeling results in
imaging-genetics studies.

There is an analogy between the proposed approach and the recent group-PCA method proposed in fMRI
analysis.16 In both cases we aim at an approximation of the overall covariance matrix by serial updates of
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eigen-components estimated in data batches. In this work we extend this idea to the multimodal setting, and
we develop the theory necessary for the implementation of the model in meta-analysis.

Finally, we hope this development will soon lead to real imaging-genetics discoveries. As part of future
development, we plan to integrate meta-PLS and sequential-PLS into a large imaging genetics consortium study.
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